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ABSTRACT

Forecasting tropical storm intensities is a very challenging issue. In recent years, dynamical models have

improved considerably. However, for intensity forecasts more improvement is necessary. Dynamical models

have different kinds of biases. Considering a multimodel consensus could eliminate some of the biases

resulting in improved intensity forecasts as compared to the individual models. Apart from the ensemble

mean, the construction of multimodel consensuses has always contributed to somewhat improved forecasts.

The Florida State University (FSU) multimodel superensemble is one that, over the years, has systematically

provided improved forecasts for hurricanes, numerical weather prediction, and seasonal climate forecasts.

The present study considers an artificial neural network (ANN), based on biological principles, for the

construction of a multimodel ensemble. ANN has been used for constructing multimodel consensus forecasts

for tropical cyclone intensities. This study uses the generalized regression neural network (GRNN) method

for the construction of consensus intensity forecasts for the Atlantic basin. Hurricane seasons 2012–16 are

considered. Results show that with only five input models improved guidance for tropical storm intensities

may be obtained. The consensus usingGRNNmostly outperforms all themodels included in the study and the

ensemble mean. Forecast errors at the longer forecast leads are considerably less for this multimodel

superensemble based on the generalized regression neural network. The skill and correlations of different

models along with the developed consensus are provided in our analysis. Results suggest that this consensus

forecast may be used for operational guidance and for planning and emergency evacuation management.

Possibilities for future improvements of the consensus based on new advances in statistical algorithms are also

indicated.

1. Introduction

Consensus forecasts for meteorological events were

operationally used in the pioneering studies of Toth and

Kalnay (1993 1997), Molteni et al. (1996), Houtekamer

et al. (1996), and Goerss (2000). Krishnamurti et al.

(1999) introduced the notion of a multimodel super-

ensemble (MMSE) to combine multimodel forecast

datasets using a linear multiple regression approach that

utilized the mean-square error reduction principle.

Studies reported on the efficiency of this consensus ap-

proach for the forecasting of tropical cyclones, including

Krishnamurti et al. (1999, 2000), Williford et al. (2003),

and Kumar et al. (2003). Cane and Milelli (2006) and

Sanders (1973) had shown that a simple average of a set

of forecasts produces better forecasts, which is often

superior to the best model. This may be attributed to the

notion that the arithmetic mean is mostly an unbiased

estimator of the population mean of a statistical pop-

ulation. Here, one might assume that the model fore-

casts are the sample observations and the average of

these forecasts is the sample mean. Another way of

looking at this is to regard every model forecast as an

estimate of the event to be forecasted, and the simple

mean of the results is a standard combination of those

estimates. This notion was also expressed in the works

of Leslie and Fraedrich (1990), Mundell and Rupp

(1995), and Goerss (2000), who examined tropical cy-

clone track forecasts. These studies show that a con-

sensus, on the average, produces better results than the

individual member model forecasts. The ensemble av-

erages showed considerable improvement compared to

the membermodels in the studies by Goerss et al. (2004)

and Sampson et al. (2005) for forecasts of typhoons over

aWe are extremely sorry to announce that Dr. Krishnamurti

passed away during the editorial process of this manuscript. He

contributed to this work immensely.
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the western North Pacific and the Southern Hemisphere.

The National Hurricane Center (NHC) introduced a

consensus model called GUNA (Franklin 2006; Goerss

2000) in 2001. (A list of key consensus-naming acronyms

and their expansions is provided in Table 1.) GUNA was

based on the average of GFDL (Kurihara et al. 1993,

1995, 1998), Met Office Model (UKMO; Cullen 1993;

Heming et al. 1995), NOGAPS (Hogan and Rosmond

1991; Goerss and Jeffries 1994), and the GFS model.

GUNA has presently been discontinued by NHC. There

are some ensembles where member models can vary.

One is CONU (Goerss 2000). This was derived by

taking a simple average of at least two of the five models:

GFS, GFDL, the U.S. Navy’s version of the GFDL

model, NOGAPS, and the UKMO model. This type of

consensus was started in 2000. NHC has been using sev-

eral consensus aids constructed through varying and

nonvarying member models. Presently, NHC uses con-

sensus models, namely, ICON and IVCN for forecast

guidance. ICON is a simple average of the following

models: DSHP, HWFI, LGEM, and GHMI. Therefore,

member models do not vary in ICON. IVCN is an aver-

age of at least two of the DSHP, GHMI, AVNI, and

LGEM models. In the case of IVCN, member models

vary. Therefore, depending on availability, sometimes it

is the average of two models, sometimes it is the average

of three models, and sometimes it is the average of all

four models. The COAMPS-TC regional model has been

included in IVCN since 2015. Unlike a simple consensus

in superensemble methodology, variable weights are as-

signed to the models included for the construction of the

consensus. This approach has been used extensively in

hurricane, NWP, and climate forecasts. A summary of

these works appears in Krishnamurti et al. (2016). Here,

the unique aspect was in the number of weights used.

Those weights vary in the three space dimensions, with

time, with different variables, and with the number of

models being considered. Goerss (2000) also reported

that the construction of a consensus using simple aver-

ages of skilled models gives better forecasts for hurri-

cane intensities. Construction of a weighted consensus

for tropical intensity forecasts was also studied by

Emanuel (2005) and Biswas et al. (2006). These studies

revealed improvements in skill from the combination of

forecasts, mostly outperforming the best-performing

individual model.

The construction of ensemble forecasts for hurricane in-

tensity is much needed. Intensity forecasts are still a chal-

lenge, and no dynamical model is currently performing

reliably in a consistent manner. The construction of a

weighted average of model forecasts was introduced

byKrishnamurti et al. (1999)with the least squares principle

in a linear regression. It requires some statistical

assumptions on the relationships among the dependent and

independent variables. However, assumptions on the cau-

sality and validity of such relationshipsmaynot always hold.

In reality, individual model forecasts are available to be

combined for making consensus forecasts. Whenever past

forecasts and observed values are available, they can be

used to construct a consensusmodel. Those historical values

led to the construction of consensus forecasts using the

principle of learning through experience. The concept of an

artificial neural network (ANN) is used here to find an

optimum consensus output (forecast) from the different

model forecasts. Thismethodologyworks following theway

the human brain makes a decision. For example, a child is

shown a chair and is told the name of the object ‘‘chair’’

repeatedly. This is called the learning (training) phase. Af-

ter some time, if the same object is shown to her, she can

identify a chair correctly. She does this from experience

gained during the learning phase. Information received

through one or more neurons in the input layer is passed to

different neurons in the next layers and finally to the brain.

The brain makes an appropriate decision that may be

treated as an outcome. It is worth noting that the brain

makes the decision from its past experience so that the

decision is supposed to be the best one for that kind of sit-

uation. ANN mimics this idea to get an optimum solution

in a given situation when past observations are available.

There are different kinds of ANN configurations and ar-

chitectures. These are nowwidely used in computer science

(image processing, speech recognition, etc.) and other fields

as well. This method gives an optimal solution for a par-

ticular situationon thebasis of past experience. The concept

of ANN has also been used to derive better solutions for

many atmospheric science problems. A very brief de-

scription of some of this previous work is given below.

Liu et al. (1997) have shown that neural network

estimates of longwave net radiation at the sea surface

are better than those found when using a regression

approach. They used five input, one output, and two

hidden layers. A longwave radiative transfer model was

developed using ANN by Chevallier et al. (2000). Ali

et al. (2004) have used ANN to estimate ocean sub-

surface thermal structure from surface parameters. Es-

timation of nonlinear interaction for wind-wave spectra

using ANNwas examined by Tolman et al. (2005). They

found that their neural network–based interaction ap-

proximation provided reasonable results with a limita-

tion of integration to models. Krasnoplsky et al. (2005)

have developed a hybrid environmental numerical

model by combining a deterministic model and an ANN

model with improved results. Application ofANN in the

estimation of ocean mixed layer depth was studied by

Swain et al. (2006). Jain et al. (2007) have studied

ocean sonic-layer depth estimation by applying ANN
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techniques. Surface parameters were taken as input in

their study. Forecasts of ceiling and visibility using ANN

from surface observations and model output were

studied byMarzban et al. (2007). Sharma and Ali (2013)

applied ANN to achieve high-resolution tropospheric

temperature profiles using geostationary satellite ob-

servations. Sharma et al. (2013) have shown that the use

of ANN for the prediction of cyclone intensity using the

usual atmospheric parameters and ocean heat content

could produce better predictions than other alternatives.

Roebber (2015) has shown that ensemble forecasts

considering evolutionary programming improve the

temperature forecasts for Chicago, Illinois, as compared

to the operational ensemble model output statistics.

Roebber (2015) also demonstrated that the pooling of

evolutionary programs and conventional ensembles

produced improvements in the forecasts with respect to

root-mean-square error (RMSE). In SHIPS (DeMaria

and Kaplan 1994), the diagnostic synoptic parameters

were used to develop a hurricane intensity forecast using

the multiple linear regression technique. Sampson et al.

(2008) have studied the construction of simple consen-

sus models using simple averaging for intensity pre-

diction. However, a study on tropical storm intensity

forecasts using ANN has not been reported yet. In the

present study, the effectiveness of ANN is examined;

specifically, the role of the generalized regression neural

network (GRNN) in constructing consensus forecasts

using available single model forecasts on tropical storm

intensities in the Atlantic basin is explored.

Section 2 describes the data and the study region.

Sections 3 and 4 contain the methodology and results,

respectively. A summary and discussion are provided in

section 5.

2. Data

The Automated Tropical Cyclone Forecasting Sys-

tem (ATCF) data from the NHC deck were used. The

data are available online (http://ftp.nhc.noaa.gov/atcf/

archive/). These files carry the datasets of the various

model forecasts at 6- or 12-hourly time intervals for all of

the hurricanes and tropical storms. Best-track data are

also available via the same link. Our study covers the

data in the Atlantic basin for the years 2011–16. The

geographic region on which this work is concentrated

is shown in Fig. 1. Figure 1 also reveals storm paths,

where different colors of the trajectories indicate the

different intensity categories of the storms. Along with

the observed data we have considered forecasts pro-

vided by the following models: AVNI, GHMI, HWFI,

DSHP, LGEM, OFCI, and IVCN. OFCI and IVCN

were considered only for performance comparison, not

for developing the consensus forecast. Forecast models

vary from year to year as a result of changes in themodel

physics and other empirical processes. The effort here is

in increasing the number of cases within a single hurri-

cane season. It is desirable to have more cases from the

same year for real-time forecasting. However, for the

initial storms of a season, there is no alternative but to

TABLE 1. Description of models taken into consideration.

Name ATCF ID Type

Official NHC forecast OFCL

Previous cycle OFCL, adjusted OFCI Interpolated

National Weather Service (NWS) Global Ensemble Forecast System

(GEFS)

AEMN Consensus

Previous cycle AEMN, adjusted AEMI Consensus

NWS–GFDL model GFDL Multilayer regional dynamical

Previous cycle GFDL, adjusted GFDI Interpolated–dynamical

Previous cycle GFDL, adjusted using a variable intensity offset

correction that is a function of forecast time; note that for track,

GHMI and GFDI are identical

GHMI Interpolated–dynamical

NWS Hurricane Weather Research and Forecasting Model (HWRF) HWRF Multilayer regional dynamical

Previous cycle HWRF, adjusted HWFI Interpolated–dynamical

Average of at least two of DSHP, LGEM, GHMI, HWFI, GFNI,

and COAMPS-TC (since 2015)

IVCN Consensus

Logistic Growth Equation Model LGEM Statistical–dynamical

Statistical Hurricane Intensity Prediction Scheme (SHIPS) SHIP Statistical–dynamical

SHIPS with inland decay DSHP Statistical–dynamical

Average of GHMI, EGRI, NGPI, and GFSI GUNA Consensus

Previous cycle GFS, adjusted GFSI Interpolated–dynamical

Previous cycle UKMO (EGRR), adjusted EGRI Interpolated–dynamical

Previous cycle NOGAPS (NGPS), adjusted NGPI Interpolated–dynamical
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use the previous year’s data. But as soon as a new season

starts and storms occur, we should include the most-

recent data so that the consensus model, which uses past

data to generate forecasts, receives updated data with

model changes to improve its performance.

3. Methodology

In making consensus forecasts using a multimodel,

Krishnamurti et al. (1999) have taken a linear combi-

nation of the model forecasts. The coefficients of the

linear combination were obtained by the least squares

method from the previous cases. However, in the case

of forecasting tropical storm intensities, it may be ob-

served that the product moment correlation coefficient

(which indicates the extent of a linear relationship) of

model forecasts and observed values decreases with

forecast leads. This happens, especially, for longer

forecast leads. This indicates that in the longer forecast

leads the relationship between the linear combination

of model forecasts and observed intensities is nonlin-

ear. The ANN methodology is well recognized for its

better usefulness in the case of nonlinear situations. This

methodology has been applied in optimization prob-

lems for many years. This is based on the principles of

the human learning experience. It is the process of

making an optimum decision by learning from past

experiences. A large number of input–output examples

are provided, on the basis of which a model is devel-

oped. That model gives the output corresponding to a

new set of input(s). Generally, a neural network archi-

tecture comprises an input layer, one or more hidden

layers, and an output layer. Information is received at

the input layer and then processed at the hidden layers,

and the final output is delivered at the output layer.

Based on the architecture and the learning process,

there are different types of neural networks. In this

study the concentration is on GRNN (Specht 1991). It

is a function approximation approach based on kernel

regression or conditional expectation. Here, the net-

work architecture is fixed, and there are two hidden

layers between the input and output layers. The acti-

vation function is Gaussian with only one parameter,

denoted by s, called the bandwidth. Here, model

forecasts are taken as input. A schematic diagram is

provided in Fig. 2.

FIG. 1. The study area in the Atlantic basin. Storms during the year 2016 are shown. Different shades for

a particular storm indicate the category of the storm according to the intensity scale. Image is courtesy of NHC,

NOAA (http://www.nhc.noaa.gov/data/tracks/tracks-at-2016.png).
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For forecasting a storm in a given year, cases from the

previous year, as well as storms from earlier in the same

year, including the observed intensities, were used.

Irrespective of forecast lead hour each model forecast

and observed intensity were used, respectively, as an input–

output example. All such cases were taken together.

This increases the number of recent cases with recent

model changes. The datasets were prepared as below.

Intensity forecasts for all forecast leads (i.e., 12, 24, 36,

48, 60, 72, 84, 96, 108, and 120 h) were collected for the

years 2011–16. The number of cases obtained are 1970

(in 2011), 2468 (in 2012), 836 (in 2013), 745 (in 2014), 798

(in 2015), and 1701 (in 2016). In forecasting the cases of a

year, all cases of the previous year and the cases up to

the current cases of that year were used together. This

was done to avoid the heterogeneity of model forecasts

over the years due to parametric changes in the models.

In some of these cases, initially, not all model forecasts

were available. For example, in a set for a single case, all

included model forecasts and the corresponding ob-

served data should be there. But, if any one ormore than

one of the model forecasts is not available, then those

unavailable data or forecasts were treated as missing

values. The numbers of missing values for years 2011,

2012, 2013, 2014, and 2015 are, respectively, 91, 75, 74,

22, and 40. If, in a set for a single case, at most twomodel

forecasts were not available (i.e., missing), then the

missing value(s) were replaced by the average of the

available model forecasts of that particular case. This

exercise helped to increase the number of cases, al-

though such cases are very few with respect to the total

number of cases. No standardization was carried out

since all data are of the same type or unit. Then, GRNN

was developed by the standard process of splitting the

data into training and testing sets. For example, in the

case of forecasting the 2013 storms, all 2468 observations

or cases of 2012 were taken together with the available

2013 cases. Then, the dataset was split systematically

into two sets, namely the training set and the validation

set (sometimes called the verification set). The method

developed by May et al. (2010) was used in this process.

The training set contained 70% of the total cases, and

the remaining cases were in the validation set. The data

splitting can also be done randomly as well. Here, sys-

tematic splitting is preferable as it follows the principle

of systematic sampling from a population having a sys-

tematic characteristic (i.e., linear trend). In tropical

storm intensity, it may be found that the correlation

coefficients of model forecasts and observed values

gradually decrease from forecast leads of 12 to 120 h.

Here, all forecast lead cases have been taken together.

Therefore, it is expected that there would be a system-

atic pattern in the combined dataset. The data were

split so that both the training set and the validating set

contains cases from each forecast lead (e.g., 12 hourly,

24 hourly, . . . , 120 hourly) case. However, Sharma and

Ali (2013) mentioned that the splitting of the data

does not change the results significantly. Thefore, if

data are split randomly, then similar results are also

expected.

The training set is used to develop the ANN model,

whereas the validation set is used for tuning the ANN

model so that the model does not get overfitted and also

gives better forecasts for the testing data. After the

training set is used to train the model, the validating set

is used to optimize the parameter bandwidth. Note that

the validating set was outside the training sample so that

those cases can be treated as new data. The bandwidth

that gives the minimum mean square error (MSE) is

taken for use in the forecast phase. This follows from

May et al. (2010). This step may be skipped, and the

trained GRNN model can be used to test or forecast

directly without further optimizing the bandwidth pa-

rameter. During the process, cases to be forecasted were

taken as the test set, and they were not part of devel-

oping the ANNmodel. For example, all cases of 12-, 24-,

36-hourly, etc. data of 2013 were put into the different

testing sets. Those data were used to get the new fore-

casts employing the developed ANN model. So when

12-hourly values were forecasted, those data were not

included in either the training or validating set. There-

fore, the values to be forecasted were outside the training

or validating sets and were not experienced by the model

at all. The process was followed for every forecast lead.

The effort was made to predict a set of data, using

GRNN, outside of a given big dataset where all the pre-

dictors and predictands are located. The mean square

errors, mean absolute errors (MAEs), and correlation

FIG. 2. Schematic diagram of the GRNN.

JUNE 2018 GHOSH AND KR I SHNAMURT I 877

Unauthenticated | Downloaded 01/03/23 08:42 PM UTC



coefficients are also calculated for the model by com-

paring the output of testing utilizing the target output.

In developing ANN, hidden layers are considered,

mostly for the nonlinear relationships. Generally, the

number of hidden layers is chosen by a trial and error

method. The complexity of the network increases along

with the increases in the hidden layers. GRNN does not

suffer from this characteristic. The novelty in feeding the

training period observed fields is that mostly only the

values provided by the models and the observed values

for the same forecast season were considered. It is as-

sumed that there would not be changes to the models

within a season.

The objective of this study was to examine how

GRNN predicts a storm intensity given a large set of

similar cases. Performances of different models are also

not similar in each year. Therefore, it is preferable to

include cases of each recent storm, as they reflect the

models’ latest characteristics, as soon as they are incor-

porated. At the same time, old cases may be truncated

from the dataset as a result of old model configurations.

For example, in this study for predicting cases of 2012,

cases of 2011 and available cases of 2012 have been used.

The training set for the 120-h forecast lead of 2012

contained 2958 cases, and 827 different cases were used

to tune the bandwidth of the network.

4. Forecast results

In this section, the results for intensity forecasts for

the hurricane seasons from 2012 through 2016 are in-

cluded. The GRNN algorithm was run using datasets

from the NHC (http://ftp.nhc.noaa.gov/atcf/archive/).

Forecast errors for all of the named storms between 2012

and 2016 are included. The results for the seasonal

summaries are shown as bar diagrams in Figs. 3a–e.

The summary of results for the 2012 hurricane season

is shown in Fig. 3a. These results show a significant re-

duction in intensity forecast errors. The absolute errors

between hours 24 and 120 were nearly constant around

7–9 kt (1 kt 5 0.51ms21). The 12-h absolute error of

hurricane intensity, for most models, was around 6kt,

and the GRNN results show the least error compared

to the other models. The total number of forecast cases

varies between 177 (for 120 h) and 306 (for 12 h) for

different forecast intervals. Figure 3a also indicates that

the neural network–based ensemble produces at least

10% less error for the forecast leads of 48–120h com-

pared to models like IVCN, OFCI, and EM. It may be

noted that such a number of cases carries rather robust

results for the GRNN.

Seasonal forecast errors for the year 2013 can be

seen in Fig. 3b. The numbers of cases vary between

38 (120 h) and 143 (12 h). Interestingly, here it is worth

noting that GRNN gives very small errors, less than 5kt,

at the lower forecast leads. At the longer forecast leads

GRNN produces almost the same error as for the

ensemble mean (EM) except for 72 and 96h. On these

two occasions, GRNN has more errors than EM, which

has the least error among all other models during

this season.

The results for the 2014 season are shown in Fig. 3c.

The minimum number of cases here is 24 at the 120-h

forecast lead, and the maximum number of cases is 89

at the 12-h forecast lead. Since the number of cases

is relatively low, marked improvements from the

GRNN may not occur. Nevertheless, the forecasts

from GRNN between hours 36 and 120 were compa-

rable or better (as at hours 36 and 96) than those

of the best-performing model. GRNN produces fewer

forecast errors at the forecast leads of 36, 60, 84, 96,

and 108 h than IVCN and the EM. OFCI produces

higher MAEs than the GRNN at forecast leads of 60,

72, 84, and 96 h. Out of these, at 96 h the improvement

is more than 10%.

Figure 3d depicts the forecast errors of different

models for the 2015 season. Here, the number of hurri-

cane forecast cases ranges between 46 (120 h) and 105

(12h). Results show the best error reductions for the

GRNN for 36h onward. It may be noted that the indi-

vidual member models show large forecast errors (more

than 10 kt for leads of 36 h onward). However, the

forecast errors of GRNN are less than 10 kt except for

108- and 120-h leads. GRNN produces fewer errors

(10% or more) than all of the consensus models, EM,

IVCN, and OFCI, especially for the forecast leads of

84–120h.

The number of cases in 2016 is between 113 (120 h)

and 232 (12h). Forecast errors for this year show that

GRNN almost consistently outperformed all member

models beyond a forecast lead of 96 h.

In the 2016 season, the mean absolute errors were

rather uniform around 12kt between hours 48 and 120

for GRNN. Here, it may be seen that GRNN has the

least forecast errors for the forecast leads of 72–120h.

GRNN produces 10% less error in comparison to OFCI

for leads of 96–120h. However, the improvement over

IVCN varies from 2% for 108 h to 8% (72 h). At 96-h

lead, the improvement of GRNN with respect to both

EM and IVCN is about 2%. Overall, what is note-

worthy here is that GRNN would be most valuable

for real-time forecasting if the number of cases was

more than 113. GRNN produces fewer forecast er-

rors at longer forecast leads for the years 2012 (48 h

onward) and 2016 (72 h onward) as well. In these

years, the number of cases was relatively high. The
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higher the number of cases, the lower the forecast

errors from GRNN. Therefore, it may be said that

consistency in lower forecast errors for longer fore-

cast leads of 36 h and onward is a notable character-

istic of the GRNN forecasts. In the above seasonal

summary, one important aspect is that for real-time

forecasts as soon as a forecast is completed with

ample cases, one can expect GRNN to provide the

best hurricane intensity forecasts. Having such

information for real-time cases could be very bene-

ficial for forecast guidance.

a. Performance with respect to some named storms

Some individual storm forecasts for the 2016 season

were also studied. TheMAEs for the hurricane intensity

forecasts for the ‘‘named storms’’ Gaston, Hermine,

Matthew, and Nicole of the 2016 season are presented

in Figs. 4a–d, respectively.

FIG. 3. Seasonal hurricane and tropical storm intensity forecast er-

rors during (a) 2012, (b) 2013, (c) 2014, (d) 2015, and (e) 2016. The

ordinatedenotes themeanabsolute intensity error (kt), and theabscissa

denotes forecast hours at 12-h intervals. The numbers of forecast cases

are shown within parentheses.
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The forecasts from GRNN for Gaston (Fig. 4a) car-

ried the smallest mean absolute errors for intensity

compared to nearly all of the member models at hours

24 and 120. The range of the number of member model

forecast cases was between 25 (at hour 120) and 44

(at hour 12). The initial 12 h carries a large random

error component related to the spinup of the model’s

hurricane intensity. This feature was noted in most

model intensity forecasts. This calls for further re-

search in the initial intensity specification for models.

GRNN produces the second smallest error among

the models at forecast leads of 36–96 h, while LGEM

generates the smallest error at those hours. However,

GHMI has fewer forecast errors than GRNN at 84 h.

Gaston was a category 4 storm.

The summary of results for Hermine is shown in

Fig. 4b. GRNN has not been adequately tested thus far

for tropical depressions where there is a difficulty in

tagging the intensity reference. Hermine was a category

1 storm. Results from this hurricane show that LGEM is

one of the models that produces the largest error, even

though it had the smallest error for Gaston. In the case

of Hermine LGEMproduced the largest errors for leads

of 36 and 48h and produced the second largest errors for

leads of 24, 60, 84, 96, and 120 h. OFCI has the least error

in forecasting the intensity of Hermine at the longer

forecast leads. GHMI also produced much less error at

the short- to medium-range forecast leads. The major

drawback from the perspective of GRNN was that the

number of cases ranged from 11 to 33 between 120 and

12h. This number of cases was too low compared to

Gaston, where the number of cases was between 25 and

44. However, the MAEs of EM and GRNN are almost

the same for all forecast leads. The errors for GRNN

range between 5 and 12kt. This is an encouraging

feature.

The forecast errors for major Hurricane Matthew are

presented in Fig. 4c. This storm had a rapid intensifica-

tion event. Consequently, the storm was also a difficult

one to forecast with respect to intensity. Interestingly,

here HWRF (HWFI) has made exceptionally good

forecasts, but they were not better than those of GRNN.

Beyond the forecast leads of 60 h, except at 120 h,

GRNN produced fewer errors than HWRF (HWFI).

FIG. 4. Intensity forecast errors for (a) Gaston, (b) Hermine, (c) Matthew, and (d) Nicole during 2016. The ordinate denotes the mean

absolute intensity error (kt), and the abscissa denotes forecast hours at 12-h intervals. The numbers of forecast cases are shown within

parentheses.
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Therefore, in the case of rapid intensification as well, it

may be expected that GRNN would have the smallest

forecast errors for longer forecast leads. The mean

absolute errors range approximately between 8 and

17kt in the case ofGRNN, which is much lesser than any

models considered here including the OFCL (OFCI).

It may be mentioned that EM produced the same error

as GRNN at the 84-h forecast lead.

Figure 4d shows the results for Hurricane Nicole. It

was also a category 4 storm. This was a storm where the

GFDL’s model, named GHMI, outperformed all other

models after hour 12 of the forecast. GRNN was clearly

the second-best model during the forecast history for

Nicole. The excellent performance of HWRF/HWFI

for Hermine and GFDL/GHMI for Nicole is something

that may be expected because some models will out-

perform all others for a specific storm but without con-

sistency. In its performance, GRNN is either the best or

a close second for individual storms. The seasonal

summary shows that it outperforms other models. This

feature indicates the usefulness of the improved GRNN

when using the neural network.

Therefore, from the intensity errors of some impor-

tant storms in the 2016 season it may be observed that

there is no single model that has uniformly minimum

errors irrespective of storms and forecast leads. For

example, forecasts of LGEM for Gaston were very im-

pressive. But that is not seen for other storms like

Hermine, Matthew, and Nicole, where LGEM forecasts

carry significantly larger errors. OFCI forecasts have

much smaller errors in the case of Hermine. However,

this is not the case for Gaston, Matthew, and Nicole.

HWFI had smaller errors for Matthew, but for Gaston,

Hermine, andNicole theHWFI forecast errors are quite

large. GRNN shows consistently smaller forecast errors

for the individual storms mentioned here, especially for

the longer forecast leads. Matthew was a major hurri-

cane with rapid intensification events. Therefore, it may

be mentioned here that the relatively small forecast er-

rors from GRNN in the case of Hurricane Matthew are

quite encouraging. That implies, at least for longer

forecast leads, that neural network–based consensus

forecasts may be depended upon for better guidance.

The utility of this lies in the fact that better forecasts

for longer leads help with proper planning for evacu-

ation, if necessary, as well as disaster management

planning.

b. Forecast skills

Comparison of the forecast skills of different models,

along with the ANN-based combined forecasts, to

climatology–persistence (OCD5) was done. The com-

putations of skills were made using the formula

S
kf
(m)(%)5 1003 e

bf
2 e

mf

� �
/e

bf
,

where ebf is the forecast error of the baseline model

(CLIPER-Persistence or OCD5) and emf
is the forecast

error of the model under consideration. Figure 5 relates

to the 2016 cases only. It shows that GRNN has the

highest skill among all models including the consensus

models, IVCN, and the interpolated official forecasts

(OFCI). At 72-h lead, OFCI and GRNN have the same

skill levels. IVCN has equal skill to GRNN only at the

forecast lead of 84h. Another consensus model, EM, has

slightly better skill at the forecast lead of 60h. EM and

GRNN have the same skill at the forecast leads of 48, 72,

and 84h. Therefore, it may be said that in the 2016 season

GRNN is themost skillful model for intensity forecasting.

Forecast accuracy of the new GRNN methods for the

2016 season, in terms of other measures, is provided in

Table 2. Table 2 contains the forecast accuracy of other

consensus models (i.e., EM and IVCN as well) for

comparison purposes. IVCN is NHC’s operational

consensus model whereas EM is the most commonly

used consensus forecast.

Accuracy measures like bias (kt), correlation coef-

ficient R between the observed and the forecasted

intensity values, root-mean-square errors, and scatter

index (SI; the ratio of RMSE to the data mean) are

considered here. It may be noted from Table 2 that with

respect to the considered accuracy measures the GRNN

forecasts are better than the EM forecasts most of the

time (i.e., the equal-weighted mean of the model fore-

casts). IVCN was included as it is an operational con-

sensus model used by the NHC. It provides good

forecasts. The biases of GRNN are always lower than

FIG. 5. Skills of different models with respect to climatology and

persistence during the 2016 season. The ordinate denotes skill

based on climatology and persistence (formula provided in the

text), and the abscissa denotes forecast hours at 12-h intervals. The

numbers of cases are shown in parentheses.
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those of IVCN except for at 48-h lead. The lowest bias

for GRNN (IVCN) is 1.2 (2.1), while the greatest bias

for GRNN (IVCN) is 6.4 (7.9). Correlation coefficients

of GRNN are higher than or equal to those of IVCN

except for leads of 108 and 120 h, while EM has smaller

or equal correlation coefficients than GRNN for all

forecast leads. Lower values of SI indicate less variance

in the forecast errors. Therefore, a good model pro-

ducing the lowest SI is preferable. GRNN has smaller

RMSE than IVCN and EM, except for at 120-h forecast

lead. Therefore, considering the above results, it may

be claimed that generally GRNN provides better fore-

casts for hurricane intensities than IVCN and EM

during the 2016 season. A similar analysis of other sea-

sons has also been performed, but the results are not

included here.

c. Ensemble spread and forecast errors

It is well known that, normally, the correlation be-

tween ensemble spread and forecast error is positive

(Kalnay and Dalcher 1987; Murphy 1988; Buizza 1997)

for shorter forecast leads. However, Barker (1991)

showed that even in ‘‘perfect model’’ experiments the

correlation coefficient between ensemble spread and

error (sometimes called forecast skill) can be very low.

An idealized model is one that is free from system-

atic biases. A detailed discussion of this topic may be

found in Whitaker and Loughe (1998). In this study,

the correlation coefficient between the ensemble spread

and mean absolute errors has been computed. Compu-

tations were carried out for both the models, EM and

GRNN, separately for each season. The results obtained

do not show an encouraging relationship. All seasons

showed very low correlation coefficients irrespective of

forecast leads. Computed correlation coefficients are

given in Table 3 for the years 2012, 2013, and 2016. It

may be observed that for hurricane intensity forecasts

both EM and GRNN show similar characteristics with

respect to ensemble spread and forecast error correla-

tion coefficients.

5. Summary and discussion

The construction of multimodel consensus forecasts

based on an artificial neural network (ANN) was con-

sidered. The objective is to aid in the operational fore-

cast process for the Atlantic basin. The GRNN method

of ANN was deployed to examine whether consensus

forecasts based on ANN are useful in forecasting trop-

ical storm intensity. The models used for developing

the GRNN consensus forecasts are AVNI, DSHP,

GHMI, HWFI, and LGEM. Two important models,

IVCN and OFCI, were considered for comparison pur-

poses. OFCI may be regarded as one of the best

TABLE 2. Performance indicators of different consensus models during the 2016 season. The number in parentheses below each forecast

lead time is the number of cases.

Forecast lead (h)

12

(231)

24

(221)

36

(208)

48

(193)

60

(168)

72

(157)

84

(148)

96

(138)

108

(123)

120

(113)

Bias GRNN 1.2 2.5 2.5 3.4 2.0 2.3 3.7 3.6 4.2 6.4

EM 2.7 3.6 3.7 3.4 3.1 3.0 3.7 4.3 4.6 6.3

IVCN 2.1 3.3 3.5 3.3 3.6 3.9 4.9 5.7 6.0 7.9

R GRNN 0.96 0.92 0.88 0.85 0.86 0.87 0.85 0.84 0.81 0.78

EM 0.95 0.91 0.87 0.85 0.85 0.85 0.85 0.82 0.79 0.76

IVCN 0.95 0.91 0.88 0.85 0.85 0.85 0.84 0.83 0.82 0.80

RMSE GRNN 6.5 9.8 11.9 13.9 11.4 10.1 11.1 10.5 11.9 13.1

EM 7.6 10.8 12.9 13.9 12.2 11.0 11.1 11.4 12.2 13.1

IVCN 7.1 10.7 12.9 13.9 12.6 11.4 11.9 11.6 11.8 12.3

SI GRNN 1.1 1.2 1.2 1.3 0.97 0.88 0.95 0.88 0.98 1.0

EM 1.2 1.3 1.3 1.3 1.1 0.96 0.95 0.90 0.92 0.94

IVCN 1.2 1.3 1.3 1.3 1.1 0.96 0.99 0.93 0.94 0.92

TABLE 3. Correlation coefficient between ensemble spread and

mean absolute forecast errors for hurricane intensity forecasts in

the Atlantic basin obtained for two ensembles: GRNN and EM.

Forecast

hours

2012 2013 2016

GRNN EM GRNN EM GRNN EM

12 20.03 20.002 0.16 0.17 0.28 0.28

24 20.09 20.1 0.10 0.23 0.11 0.13

36 0.02 20.002 0.01 0.12 0.12 0.13

48 0.001 0.02 0.03 0.14 0.13 0.13

60 0.06 0.07 20.09 20.13 0.08 0.06

72 0.05 0.09 20.2 20.37 0.07 0.06

84 20.01 0.08 20.02 20.3 0.16 0.16

96 0.04 0.02 20.32 20.2 0.09 0.09

108 0.06 0.09 20.24 20.13 0.08 0.11

120 0.09 0.1 20.14 20.07 0.21 0.19
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consensus forecasts made by experienced meteorolo-

gists after considering all of themodel forecast guidance.

IVCN is an operational consensus model developed by

NHC. The training sets were made so that the numbers

of cases were maximized. This was done by consider-

ing the model and the observed intensities together,

irrespective of forecast leads. This increases the number

of cases in a hurricane season. The principle upon which

the consensus model was based is input–output experi-

ence. This eliminates the annual variation of a model

due to tuning or significant changes in the model pa-

rameters. It is evident from the various years’ intensity

forecast errors shown above that improved forecasts can

be provided using neural network approaches. The im-

proved ensemble gives minimum errors, especially for

longer (48 h and beyond) forecast hours, which is very

useful for planning and emergency management pur-

poses. Most importantly, the ANN ensemble beats the

arithmetic mean-based ensemble (EM). Storm-wise

analyses of the year 2016 show the superiority of the

new consensus forecasts. In this regard, stormsMatthew

and Nicole of the 2016 season may be mentioned. The

skill of the new consensus is also noticeably better rel-

ative to climatology and persistence. The correlation

coefficients of the observed and forecasted intensities of

different models show that the new GRNN ensemble

has the highest correlation for almost all forecast leads.

In the seasonal results, as well as a storm-wise analysis, it

may be noted that this neural network–based consensus

is the best, or a very close second best. When it is the

second best, the best model always varies. There is no

single model that is uniformly best irrespective of fore-

cast leads and seasons and storms. But the new con-

sensus may be assumed to provide a consistent, superior

level of performance for different seasons, storms, and

forecast leads. Therefore, a new neural network–based

consensus may be considered for operational use.

Moreover, GRNN has the advantages of a defined

network architecture and fixed hidden layers. GRNN

does not strive to give a local optimal solution, as in

multilayer perceptron neural networks. User choices are

reduced in developing GRNN, which makes it easier to

implement. Further improvement of this methodology

may be achieved by including more member models as

input. In this study, only five models have been used,

since these models are considered to be the top intensity

guidance models for the Atlantic basin. This machine

learning–based ensemble may be improved further by

using hybridization, a genetic algorithm, least absolute

shrinkage, and a selection operator [least absolute

shrinkage and selection operator (LASSO)] regression.

These are the next areas that will be considered in

forthcoming efforts on hurricane intensity forecasts.

It is worth mentioning that the training phase largely

uses the previous years’ forecasts. When they are used

for a current year, any model changes made during the

forecast phase suffer from the use of the statistical

weights of a previous year. This inconsistency can be

avoided if the modeling groups provide retrospective

forecasts for the previous year using the changes being

made for a current year. Use of such updated data

for training can further improve these multimodel

ensemble forecasts.
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